Spectroscopic and Configurational Assignments for *cis*-Bisdiamine Complexes

By A. J. McCaffery, S. F. Mason and (Miss) B. J. Norman

[Chemistry Laboratory IV, University of Copenhagen (A.J.McC.) and School of Chemical Sciences, University of East Anglia, Norwich (S.F.M. and B.J.N.)]

DISSYMMETRIC cobalt(III) complexes of the type cis-Co(en)₂L₂³⁺ give absorption and circular dichroism spectra similar to those of the corresponding trisdiamine complex if the ligand L is an amine, and the electronic states of such a cis-complex may be directly related¹ to those of the parent D_3 complex Co(en)₃³⁺. It is now observed that the circular dichroism spectrum of cis-Co(en)₂L₂³⁺ has a different form if the ligand L is well separated in the spectrochemical series from neutral nitrogen, consisting of two bands with the same sign in the region of the octahedral T_{1g} absorption if L = CN⁻ (Figure). This observation indicates that the electronic states of cis-Co(en)₂(CN)₂⁺, which has

¹ S. F. Mason and B. J. Norman, Chem. Comm., 1965, 73.

 C_2 symmetry, approximate more closely to those of the corresponding C_{2v} complex cis- $Co(NH_3)_4(CN)_2^+$ than to those of $Co(en)_3^{3+}$.

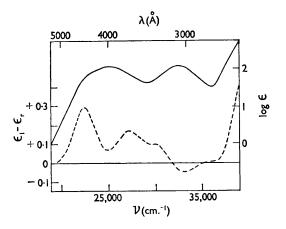
Yamatera has shown² that the electronic states of a variety of cobalt(III) complexes may be related to those of octahedral cobalt(III). . Following the method of Yamatera the wavefunctions for the electronic states of C_2 and C_{2v} cobalt(III) complexes may be expressed as linear combinations of those for the corresponding states of trigonal (D_3) cobalt(III) complexes. The lowest excited state of octahedral cobalt(III) is triply-degenerate (T_{1g}) and it breaks down in D_3 complexes into components with A_2 and E_a symmetry, and in C_2 complexes into two components with B symmetry and one with A symmetry. In general the orbital composition of the two B states of the complexes cis- $Co(en)_{2}L_{2}^{3+}$ are not symmetry-determined, except in two limiting cases. In the one, e.g. cis-Co(en)2- $(NH_3)_2^{3+}$, the electronic states approximate to those of Co(en)₃³⁺ and they are distinguished by their C_2 symmetry and direct descent from D_3 parentage as $A(E_a)$, $B(E_a)$ and $B(A_2)$. In the other, e.g. cis-Co(en)₂(CN)₂⁺, the electronic states approximate to those of the corresponding C_{2y} complex and they have the forms,

$$\Psi(A_2) = \Psi A(E_a) \tag{1}$$

$$\Psi(B_2) = (1/\sqrt{3}) [\sqrt{2} \Psi B(A_2) + \Psi B(E)_a]$$
 (2)

$$\Psi(B_1) = (1/\sqrt{3}) [\sqrt{2} \Psi B(E_a) - \Psi B(A_2)] \quad (3)$$

and the energies (E) and rotational strengths (R)listed (Table).


A sum rule for the rotational strengths of trigonal (D_3) complexes indicates³ that,

$$R(E_a) + R(A_2) = 0 (4)$$

but experimentally it is found⁴ for trigonal cobalt(III) and chromium(III) complexes that

$$\left| R(E_a) \right| > \left| R(A_2) \right| \tag{5}$$

although the two rotational strengths have opposed signs and nearly equal magnitudes. The inequality of eqn. (5) carries over¹ from $Co(en)_{3}^{3+}$ to the component rotational strengths of cis- $Co(en)_2(NH_3)_2^{3+}$, and if eqn. (5) applies equally to the component rotational strengths of the complexes cis-Co(en)₂L₂³⁺ with electronic states of the C_{2n} limiting form, such complexes should give two circular dichroism bands of the same sign, reflecting the sign of the trigonal parent E_a rotational strength, in the wavelength region of the octahedral T_{1q} absorption. The band areas of the major and the minor circular dichroism band should have values in the ratio 2:1, and the minor band should be displaced in frequency twice as far as the major

The electronic absorption spectrum and the circular dichroism spectrum ----of cis-(+)-Co $(en)_2(CN)_2$ + in aqueous solution.

from the centre of gravity of the A_2 and the E_a circular dichroism bands of Co(en)₃³⁺ (Table). It is observed (Figure) that the two positive longwavelength circular dichroism bands of cis-(+)- $Co(en)_{2}(CN)_{2}^{+}$ have areas with the approximate ratio of 2:1, and that the major and the minor band are displaced respectively by 2350 and 6900 cm.⁻¹ from the mean frequency of the A_2 and E_a circular dichroism bands of Co(en)₃³⁺. Since the two circular dichroism bands are positive in sign, and reflect the sign of the parent trigonal rotational strength $R(E_a)$, $cis-(+)-Co(en)_2(CN)_2^+$ has the same absolute configuration as (+)-Co(en)₃³⁺.

The complexes cis-Co(en)₂(NH₃)L³⁺ with L = Br-, Cl-, or H₂O give⁵ two circular dichroism bands with the same sign and an approximate band area ratio of 1:2 in the region of the long-wavelength absorption band. These complexes approximate to C_{4v} symmetry if the perturbation due to the

- ⁴ R. E. Ballard, A. J. McCaffery, and S. F. Mason, Proc. Chem. Soc., 1962, 331; J. Chem. Soc., 1965, forthcoming;
 A. J. McCaffery and S. F. Mason, Proc. Chem. Soc., 1962, 388; Mol. Phys., 1963, 6, 359.
 ⁵ J. P. Mathieu, Bull. Soc. chim. France, 1936, 476.

⁸ H. Yamatera, Bull. Chem. Soc. Japan, 1958, **31**, 95. ⁸ S. Sugano, J. Chem. Phys., 1960, **33**, 1883; N. K. Hamer, Mol. Phys., 1962, **5**, **33**9; T. S. Piper and A. Karipides, Mol. Phys., 1962, **5**, 475; H. Poulet, J. Chim. phys., 1962, **59**, 584.

absorption consists⁵ of a minor band lying at approximately the mean frequency of the A_a and E_a bands of Co(en)₃³⁺ and a major band which is the further displaced from that frequency the larger is the separation between the ligand L and

TABLE

The energies E and rotational strengths R of electronic transitions from the ground state to components of the octahedral T_{17} state of cobalt(_{III}) in the complexes $cis-Co(en)_2L_2^{3+}$ with electronic states approximating to the C_{2v} form, and in the complexes $cis-Co(en)_2(NH_3)L^{3+}$ with electronic states approximating to the C_{4v} form. The energies are expressed relative to E_0 , the centre of gravity of the energies of the A_2 and E_a transitions in $Co(en)_3^{3+}$, in terms of δ which is the difference between E_0 and the energy of the T_{1s} transition of CoL_6^{3+} . The rotational strengths are given as combinations of $R(A_2)$ and $R(E_a)$, which are the rotational strengths of the A_2 and the E_a transition of $Co(en)_3^{3+}$.

Symmetry form	Component state	Rotational strength	Energy
C ₂₀	$\begin{cases} B_1 \\ A_2 \\ B_2 \end{cases}$	$ \left. \begin{array}{c} (1/3)[R(A_2) + R(E_a)] \\ (1/2)R(E_a) \\ (2/3)R(A_2) + (1/6)R(E)_a \end{array} \right\} $	$E_0 + \delta/2$ $E_0 + \delta/4$
C40	$\begin{cases} A_2 \\ E \end{cases}$	$(1/3)[\hat{R}(\hat{A}_2) + \hat{R}(\hat{E}_a)]$ $(2/3)[\hat{R}(\hat{A}_2) + \hat{R}(\hat{E}_a)]$	$\stackrel{E_0}{E_0}+\delta/4$

(Table) from the energy of the parent hexamine transition,² and the complexes cis-Co(en)₂(NH₃)L³⁺ with electronic states of the limiting C_{4v} form should give circular dichroism bands due to the A_2 and E transitions with the same sign and a band-area ratio of 1:2 (Table). The circular dichroism spectrum of cis-Co(en)₂(NH₃)L³⁺ with L = Br⁻, Cl⁻, or H₂O in the region of the long-wavelength

neutral nitrogen in the spectrochemical series. Both the major and the minor circular dichroism bands are positive in sign for the isomers cis-(+)- $Co(en)_2(NH_3)L^{3+}$ with $L = Br^-$, Cl^- , or H_2O , which accordingly are assigned the same absolute configuration as (+)- $Co(en)_3^{3+}$.

(Received, March 10th, 1965.)